
Self-Stabilizing Multiple-Sender /
Single-Receiver Protocol

Karlo Berket, Ruppert Koch

Department of Electrical and Computer Engineering, University of California, Santa
Barbara, CA 93106, karlo@alpha.ece.ucsb.edu, ruppert@alpha.ece.ucsb.edu

Abstract. We present a new self-stabilizing protocol for many-to-one
multicasting of messages. It is based on the window washing protocol of
Costello and Varghese which uses positive acknowledgments for received
messages. The assumed model uses a single queue at the receiver's side
taking all the messages sent by N senders. The protocol provides
ow
control independently for every sender by dividing the queue into N

logical queues. To assure good performance for bursty tra�c, the share
of the queue a sender is holding is adapted dynamically to the amount of
tra�c emitted by the sender. A proof of correctness and an upper bound
for stabilization are given.

1 Introduction

In a time of increasing software complexity, protocols must be designed in a ro-
bust manner. They should be able to cope with unforeseen erroneous situations.
Since Dijkstra [3, 6] introduced self-stabilization, much work has been done on
designing protocols that use this property to guarantee return to a correct state
in case of transient errors [1, 5].

For low-level communication protocols, self-stabilization turns out to be par-
ticularly useful. Unreliable communication causes errors that must be handled
by the protocol. Gouda and Multari [4] and Spinelli [7] developed self-stabilizing
two-node sliding-window protocols. In [2] Costello and Varghese introduced a
self-stabilizing sliding-window protocol called window washing. Window wash-
ing deals with one-to-one and one-to-many communication.

Sliding-window protocols [8] for one-to-one links are straightforward. The
main problem | protecting the receiver's queue from over
owing with messages
| can be solved by controlling the number of messages the sender is allowed to
transmit. An implementation of many-to-one communication must address the
problems that arise when several sources are feeding the receiver queue. Splitting
up the receiver bu�er into N bu�ers (where N equals the number of senders)
cannot usually be done since bu�er management is a part of the network interface
itself.

Another approach is to divide the bu�er logically into N parts by assigning
the window size of the senders so that the sum of all of the window sizes is
less than or equal to the size of the receiver bu�er. Using �xed window sizes is
easy to implement but turns out to be wasteful if the tra�c is bursty. A way to

achieve better performance is to assign
exible window sizes. Senders emitting
more messages than others can use a wider window. The sum of all of the window
sizes must remain constant.

The protocol proposed in this paper achieves this by permanently check-
ing the amount of data each sender is sending. The assigned window sizes are
piggybacked in the acknowledgments. It can be seen that, by applying strict as-
signment rules and periodically resending some of the data, the protocol becomes
self-stabilizing. Loss of messages, loss of acknowledgments, arbitrarily assigned
window sizes, and inconsistent views of the system can be overcome without any
additional control within a well-de�ned period of time. This makes our protocol
both
exible and robust.

The paper is organized as follows. Section 2 brie
y describes window washing
and explains the mechanisms by which self-stabilization is achieved. Section 3 in-
troduces the window size adjustment protocol for a one-to-one protocol. Section
4 expands the protocol for many-to-one communication. A worst-case analy-
sis and a proof of correctness are given. Section 5 provides simulation results.
Section 6 states our conclusions.

2 Window Washing

The window washing protocol proposed by Costello and Varghese [2] is a sliding-
window protocol that can be used to impose
ow control in one-to-one and one-
to-many setups. Here we consider the one-to-one setup as it is given in Figure
1.

Every message is tagged with a sequence number seq. Each message is re-
transmitted periodically until the sender receives an acknowledgment for it. If
the sender window size is w, the sequence number of messages sent is in the
range [L+ 1; L+w]. L denotes the lower window edge and is attached to every
message.

Sender Receiver

messages

acknowledgments

Fig. 1. One-to-one setup. The sender sends messages to the receiver, and the receiver
sends acknowledgments back. The window washing protocol provides
ow control and
reliable message delivery. The channels are FIFO channels.

If the receiver receives a message with the sequence number seq, it checks if
seq is equal to R+ 1 where R is the sequence number of the last message it has
received. If this is the case, it increments R. If this is not the case, it discards
the message. However, if seq is not in the range of [R + 1; R+ w], the receiver
accepts the message and copies the value seq from the message header into R.

After a valid message is received, R is sent as an acknowledgment. It ac-
knowledges the message with sequence number R and all previous messages.
Like all unacknowledged messages, the last ack is retransmitted periodically to
protect the system from data loss. The sender accepts an ack if R is in the range
[L+ 1; L+w] and sets its lower window edge L equal to R. Figure 2 shows the
protocol.

SendData(L; seq;message) /* Sender emits message */
Precondition: seq 2 [L+ 1; L+w]

ReceiveData(L; seq;message) /* Receiver absorbs message */
if (R 62 [L;L+w] or seq = R+ 1) then

R = seq

deliver message
endif

SendAck(ack) /* Receiver emits ack */
Precondition: ack = R

ReceiveAck(ack) /* Sender absorbs ack */
if (ack 2 [L+ 1; L+ w]) then

L = ack

endif

Fig. 2. Window washing protocol. Variables used are window size w, lower window
edge L, sequence number seq of current message, number R of last valid message
received by receiver, and acknowledgment number ack.

Costello and Varghese show that the protocol is self-stabilizing if seq 2 [0;M]
with M not smaller than w � cmax, where cmax is the maximum number of
messages that can be in the system at any point in time.

3 Window Size Adjustment

Whereas the windowwashing protocol works �ne for one-to-one and one-to-many
communication, many-to-one communication is a di�erent kettle of �sh. In this

form of communication, many senders are writing to the same receiver queue.
The queue is divided into N logical sub-queues by assigning window sizes that
can be adjusted to the amount of tra�c a sender is creating. FIFO channels are
assumed.

We introduce our protocol in two steps. First, we describe a one-to-one pro-
tocol based on window washing that includes the feature of window size adjust-
ment. In a second step, the new one-to-one protocol is expanded to a many-to-one
protocol. It is proven that both protocols are self-stabilizing and a worst case
analysis are given.

3.1 Description of the Protocol

The protocol consists of two parts: window washing is responsible for
ow-control
and reliable transfer of messages and acknowledgments, and the window size
assignment adjusts the window size used by the sender.

On the sender's side only minor changes need to be made. In addition to the
lower window edge L and a sequence number seq, a message is tagged with the
sender's current window size ws. The acknowledgment now contains the sequence
number and the new window size. Every time an acknowledgment arrives | valid
or not | the sender overwrites its old value of the window size with the new one.
Apart from these modi�cations all senders run the window washing protocol.

Attaching the new window sizes to the acknowledgments has the advantage
that no additional messages are needed. This reduces the tra�c and, much more
importantly, allows distribution of the new window sizes without worrying about
loss of these messages. However, there is a price to pay. The assignment is less

exible: The sender is noti�ed of a change in its window size only if it receives
an acknowledgment.

The window size can be increased in arbitrary steps without informing the
corresponding sender. This is not true for decreasing the window size. We can
reduce the window size of the sender only if the sender receives an acknowledg-
ment. The reduction must not be larger than the number of messages that are
acknowledged with the ack. Imagine that the receiver attaches a new window
size to an ack that is equal to the old size diminished by more than one. At the
time the sender receives the ack, it has already sent all messages it was allowed
to send according to its old window size. Bu�er over
ow can occur.

Decrementing the window sizes in steps of one protects the receiver bu�er
from over
ow even if acknowledgments get delayed or lost. Since the sender
cannot move its lower window edge L, no more than the allowed number of
messages can be generated.

Pseudo-code for the protocol is given in Figures 3.

3.2 Proof of Correctness

The main idea of the proof of correctness is to split up the protocol into two
independent parts: the window washing protocol and the window size assign-

SendData(L;ws; seq;message) /* Sender emits message */
Preconditions: seq 2 [L+ 1; L +w]

ReceiveData(L;ws; seq;message) /* Receiver absorbs message */
if (R 62 [L;L+ws] or seq = R+ 1) then

R = seq

deliver message
AdjustWindowSize()

endif

SendAck(w;ack) /* Receiver emits ack to j */
Preconditions: ack = R

CheckWindowSize()

ReceiveAck(w;ack) /* Sender absorbs ack */
ws = w

if (ack 2 [L+ 1; L+ w]) then
L = ack

endif

CheckWindowSize() /* check for correct window size */
if (w 62 [wmin; wmax]) then

w = wmin

endif

AdjustWindowSize(newsize) /* adjusts window size */
if (wmin � newsize � wmax) then /* check if new size is in

valid range */
if (w� 1 � newsize) then /* check if window size is not

decreased too much */
w = newsize

endif
endif

Fig. 3. Send, receive, check, and adjust routines for the many-to-one proto-
col: Send and receive are similar to the window washing protocol .

ment protocol. It can be shown that both parts ful�ll the requirements of self-
stabilization. Then the two parts can be merged and it can be proven that the
protocol works correctly. Figure 4 illustrate the separation into two independent
parts.

Although the window-assignment protocol logically rests on top of the win-
dow washing protocol, the order is reversed in this proof. It is easy to see that
there is no round trip
ow of information in the window-assignment part. The

1/λ

capacity cack, latency Lack

capacity c, latency L

capacity cack, latency Lack

1/λ

1/λ

1/µ

sender receiver

Q

q

q

message exchange

window washing

window size
assignment

Fig. 4. Logical structure of the protocol. The upper sender-receiver pair represents
the window washing protocol, the lower pair the window size assignment protocol. Q
denotes the message queue size, q the acknowledgment queue size, c and L the capacity
and maximum latency of the message channel, and cack and Lack the capacity and
maximum latency of the acknowledgment channel.

receiver of the system is the source, and the sender the sink of information. It is
obvious that the whole system stabilizes after the receiver reaches a correct state
since the sender overwrites its value of the window size every time it receives an
acknowledgment. Even if acks are dropped at the sender's queue, the protocol
works since every ack contains the correct window size.

After the correct window size is established, no messages or acknowledgments
are lost. The window washing protocol begins to stabilize and eventually the
whole system becomes stable.

We will see that the entire protocol reaches a valid state approximately af-
ter 3�T , where �T denotes the timeout period for resending messages and
acknowledgments. Its value must be greater than the longest possible time be-
tween sending a message and receiving the corresponding acknowledgment in
the error-free case.

It is assumed that a sender regularly sends messages to the receiver. A state
in which one of the senders no longer sends messages is regarded as an erroneous
state. This is required by both, the window washing protocol and the window
size assignment protocol.

Let us assume the system starts from a random state. The receiver starts to
send out acknowledgments to the sender. Before doing so, the receiver checks
its window size settings. If the value does not conform to the requirements (
wmin � w � wmax), it will be set to wmin. The receiver side of the window size
assignment protocol is then in a valid state.

After reading the acknowledgment, the sender overwrites its own window size
value with the new value carried in the ack. Now the window size assignment
protocol of the sender is in a valid state, too.

The size of the acknowledgment queue of the sender is denoted as q, the
maximum channel latency as Lack, and the minimum service rate of the ac-
knowledgment queue as �.

Latest, after �T time units the receiver sends an acknowledgment which
piggybacks the correct window size. It is guaranteed that every ack carries a
valid window size by calculating w before sending the ack. The ack reaches the
sender queue at �T +Lack. However, it may happen that the receiver sends the
ack earlier and the ack is dropped. By time Lack + 1=� the sender frees a space
in its queue. Adding both times results in �T + 1=�+ 2Lack for the latest time
when an ack reaches the sender. After another 1=� (the arriving ack sees an
empty queue because q=� < �T) the ack is taken out and the correct window
size is established. The worst-case adjustment time adds up to �T+2=�+2Lack.

After the window size is adjusted, no messages are lost due to bu�er over
ow.
Window washing is guaranteed to stabilize within two round trip delays (proof
in [2]), which is less than 2�T . The total time for self-stabilization is smaller
than Tstabilize = 3�T + 2=�+ 2Lack.

4 Many-to-One Protocol

Having shown that our protocol stabilizes within Tstabilize we now expand the
model as it is depicted in Figure 5. Many senders feed messages to a single
receiver. All messages share the same queue of size Q. Every sender incorporates
an acknowledgment queue of size q.

4.1 Description of the Protocol

On the sender's side only minor changes need to be made. In addition to the lower
window edge Li, the window size wi and the sequence number seqi, messages
are tagged with the sender number i. Apart from this modi�cation all senders
run the one-to-one protocol.

To achieve self-stabilization, several variables are needed on the receiver's
side. The internal structure of the receiver is given in Figure 6. The window-
assignment protocol uses three arrays: sender, actual, and w. The �rst data
structure is a shift register that stores the sender ids of the messages received.
The capacity of the register is Q, which is also the number of messages the
receive queue can hold.

Every time a new message is removed from the receiver queue, the sender id
is stripped o� and put in the shift register. The protocol then counts the number
of identi�ers a sender i has in the register and stores the result in actual[i]. The
actual array contains the latest statistics about the tra�c distribution. Based on
this information, the new window sizes are calculated, stored in the window size
array w, and sent to the senders by piggybacking them to the acknowledgment.

Receiver

N Senders

Fig. 5. Many-to-one setup. N senders send messages to a single receiver. All mes-
sages are queued in a queue of size Q.

receiver queue
(Q buffers)

sender-id queue
(Q entries)

actual array
(N entries)

window size array
(N entries)

Σ

Fig. 6. Internal structure of the receiver. It consists of a message queue and
the servicing node. The node uses the internal arrays sender, which stores the sender
identi�ers of the last Q messages that were taken out of the queue, actual, which stores
the distribution of senders for the last Q messages, and w, which holds the assigned
window sizes for each of the senders.

It is easy to see that there is no con
ict between the senders if the window
size assignment follows several rules. As in the one-to-one protocol, the window
size can be increased in arbitrary steps without informing the corresponding
sender. However, the receiver can only reduce a window size of a sender that is
going to receive an acknowledgment, and the reduction must not be larger than
the number of messages that are acknowledged with the ack. The reasoning is
identical to that used for the one-to-one protocol.

Assigning new window sizes happens every time a message is taken out of
the receiver queue. First, it is determined whether or not the sender j whose
message was taken out can be deprived of one unit of its window size. Therefore,
the receiver checks if j's margin, which is de�ned as actual[j] � w[j], is larger
than a threshold value DecThreshold. If this is the case, the receiver picks the
sender k that has the smallest window of the senders with the smallest margin.
If its margin is smaller than IncThreshold, j's window is reduced by one and
k's window increased by one.

The protocol takes a while to adjust the window sizes correctly in case one
sender sends heavily and suddenly another sender sends a burst of messages. To
increase the dynamics of the system, a less stringent version was developed that
allows the receiver to deprive j of one unit of its window even if its margin is
less than or equal to DecThreshold, as long as it is greater than margin[k] + 1.

Pseudo-code for the protocol is given in Figures 7 and 8. Figure 7 describes
the send, receive, and check routines, whereas the window size assignment pro-
tocol is given in Figure 8. The latter also contains the main functions for both
sender and receiver.

4.2 Proof of Self-Stabilization

In the protocol described here several senders write to the same receiver. This
does not create an entirely new situation di�erent from that described for the
one-to-one protocol. The receiver can be thought of as being split up into N
receivers, each of them forming a sender-receiver pair with its corresponding
sender. That all of the messages go to the same receiver input queue does not
a�ect the window washing protocol so long as there is no bu�er over
ow. There-
fore, the sum of all of the assigned window sizes must not be greater than the
queue size Q.

The window size assignment protocol works exactly the same way as in the
one-to-one protocol. Thus, after �T +2=�+ 2Lack all senders are supplied with
the correct window size and the system stabilizes two round-trip delays later.
Again, we have a worst case stabilization time of Tstabilize = 3�T +2=�+2Lack.

With many senders, the check for a correct window size assignment at the
receiver di�ers slightly from the one-to-one protocol (see Figure 7).

SendData(L; w;sender; seq;message) /* Sender emits message */
Preconditions: seq 2 [L+ 1; L+w]

ReceiveData(L; w;sender; seq;message) /* Receiver absorbs message */
if (sender 2 [1;N])then

if (R[sender] 62 [L;L+w] or seq = R[sender] + 1) then
R[sender] = seq

deliver message
endif

endif

SendAck(j;wj; ackj) /* Receiver emits ack to sender j */
Preconditions: j 2 [1;N]
CheckWindowArray()

ReceiveAck(wj; ack) /* Sender absorbs ack */
w = wj

if (ack 2 [L+ 1; L + w]) then
L = ack

endif

BuildActualArray() /* Calculate values of actual */
for i in 1 to N do actual[i] = 0 /* set actual[] = 0 */
for i in 1 to N do actual[sender[i]] + + /* count sender-ids */

CheckWindowArray() /* Check values in w[] */
for i in 1 to N do /* �rst, check if all values

are in the valid range */
if (w[i] 62 [wmin; wmax]) then

w[i] = wmin

endifenddo
if (�w[i]> Q) then /* Check if sum of window */

for i in 1 to N do w[i] = wmin /* sizes is smaller than Q */
endif

Fig. 7. Send, receive, and check routines for the many-to-one protocol. Send
and receive are similar to the one-to-one protocol.

CalculateNewWindow(sender) /* Calculates new window size
for senders */

for i in 1 to N do /* Calculate new margins */
margin[i] = w[i]� actual[i]

enddo
if (9(margin[] < IncThreshold)) then /* Find sender whose window

will be increased */
k = sender with smallest w of senders with minimum margin

endif
if (�w[i]< Q) then /* Free bu�er space available */

if (k exists) then w[k] + +
else /* No free bu�er space available */

if (k exists AND margin[sender] > DecThreshold) then
w[k] + +
w[sender]��

endif
endif

Sender:
if timeout then w = wmin endif
if not (wmin � w � wmax) then w = wmin endif
SendData(L, w, sender, seq, message)
ReceiveAck(w, ack)

Receiver:
ReceiveData(L, w, sender, seq, message)
EnqueueSender(sender)
BuildActualArray()
CalculateNewWindow(sender)
SendAck(sender, w[sender], R[sender])

Fig. 8. Many-to-one protocol.

5 Simulation

The many-to-one protocol was evaluated using a discrete event simulation. The
simulation model was designed to match the system model given in Section 4.
The channels were designed as FIFO queues of length one.

5.1 Error-Free Simulation

For the error-free case, the simulation was started from a quasi-random state.
Every sender started creating messages either in a deterministic manner or ran-
domly with a negative exponential distribution. The rate was set to �0 = 0:04.
The receiver removed messages from the queue at a constant rate �r = 1. A
newly created message was sent if the
ow control allowed it; otherwise, it was
delayed. The measurements were taken after reaching a state of equilibrium. To
measure the ability to adapt to changes in tra�c, bursts were injected for senders
one and two. The burst rate was �b = 0:4. The results are shown in Figure 9.

From the �gures it can be seen that the �rst window assignment method is
superior to the less stringent method in reducing
uctuations of the window size
during periods of no change in the sender rates. However, the second method
proves to be quicker in redistributing the resources after sudden shifts in the
sender rates. This produces a shorter latency for messages and makes the proto-
col better suited to a changing environment. For these reasons the less stringent
window allocation protocol was chosen as the basis for further tests.

In all three diagrams the black sender sends bursts from time 2000 to 3000.
The moment the black sender stops, the grey starts bursting for 1500 units. It
takes over the black sender's share of the receiver bu�er. At time 4000 the black
sender again starts bursting, and the shares average out. At 5000 no sender is
bursting, and the bu�er is equally shared between all �ve senders.

5.2 Error Recovery

To test the error-recovery times of the protocol, three di�erent types of errors
were introduced into the system: loss of messages and acknowledgments, cor-
ruption of sequence numbers of messages and acknowledgments, and berserk
senders. The statistics used to measure the error-recovery time in these cases
were the retransmission count of the sender and the received count of the re-
ceiver. When the protocol is in the stable state, both of these measures should
be equal to one for every message sent.

The simulation results show that a loss of a single message does not a�ect
the protocol beyond the loss of that message. If the missing message were to
be retransmitted, only a small penalty would be added to the recovery process.
The same behavior occurs for the second type of error. The receiver accepts
the incorrect message and sends an acknowledgment to the sender. Since the
sequence number on the ack is invalid, the sender disregards it and continues as
if the error had not occurred. These two errors are thus indistinguishable to the
senders.

0

5

10

15

20

25

30

35

40

0 1000 2000 3000 4000 5000 6000

Time

W
in

do
w

 s
iz

e

0

5

10

15

20

25

30

35

40

0 1000 2000 3000 4000 5000 6000

Time

W
in

do
w

 s
iz

e

0

5

10

15

20

25

30

35

40

0 1000 2000 3000 4000 5000 6000

Time

W
in

do
w

 s
iz

e

Fig. 9. Simulation of the error-free case: The �gures show two senders com-
peting for bu�er space. They represent the change in the sender's window sizes
over time. The top one depicts the results achieved with the more stringent version
(DecThreshold = 1), the middle and lower ones use the less stringent version with
DecThreshold = margin[k] + 1. The IncThreshold equals one for all cases. The upper
two graphs illustrate the behavior for deterministic tra�c, the lower one deals with a
negative exponential distribution of tra�c.

0

1

2

3

4

5

2200 2220 2240 2260 2280 2300 2320 2340 2360 2380 2400

Time
T

im
es

 r
ec

ei
ve

d

Fig. 10. Simulation of a berserk sender scenario. In a system of �ve senders, one
starts to emit messages at a high rate ignoring
ow control for a certain time interval.
In this case the interval is set from 2200 to 2300 time units. The �gure shows the
number of times the same message is received versus the time it is generated. After
180 time units the protocol stabilizes and the system operates correctly.

The third error shows the resilience of the protocol. A sender emits messages
at a high rate, ignoring
ow control for a time period of 100 time units. From
Figure 10 it can be seen how the protocol stabilizes once there are no more new
errors. The error-recovery time is shown to be on the order of 200 units.

5.3 Stabilization from a Random State

To test the self-stabilizing bound of the protocol, the system was started with
the system in an uninitialized state. The variables were not initialized and ran-
dom messages were placed in the channels and queues. The system consisted
of 10 senders and a queue size of 50 and 4000 simulation runs were executed.

0

200

400

600

800

1000

1200

0 50 100 150 200 250 300

Time to stabilize

F
re

qu
en

cy

Fig. 11. Simulation of stabilizing time from a random state. In a system of ten
senders, the system is started from an uninitialized state. The simulation is run 4000
times. The �gure shows the frequency with which a stabilizing time occurs.

The statistics used to measure the stabilizing time were the same as in the
error-recovery cases. The theoretical upper bound on the stabilization time was
calculated to be 300 time units. The simulation results are shown in Figure 11.

6 Conclusion

In this paper we introduced a new sliding-window protocol that provides reliable
communication and
ow-control for many-to-one setups. The two main features
of the protocol are a
exible way of adjusting the size of the windows to di�erent
tra�c patterns and self-stabilization. A proof and an upper-time bound are
given.

The adjustment of the window size should depend heavily on the statistical
properties of the tra�c. Constant bit rate tra�c and long bursts should not
challenge the protocol, whereas short bursts and long pauses are more di�cult
to handle.

As further work, it would be interesting to see how the protocol behaves when
channel latencies are introduced, especially when they vary between senders.
This would provide results closer to the real-world scenarios we face. Another
interesting line of research would be to examine how this protocol could be
merged with a self-stabilizing one-sender/multiple-receiver protocol. The prop-
erties of the resulting multiple-sender/multiple-receiver protocol would be of
great interest to the distributed computing community.

References

1. G. M. Brown, M. G. Gouda, C. Wu, "Token systems that self-stabilize," IEEE

Transactions on Computers, vol. 38, no. 6 (June 1989), pp. 845{852.
2. A. M. Costello, G. Varghese, "Self-stabilization by window washing," Proceedings

of the 15th ACM Symposium on Principles of Distributed Computing, Philadelphia,
PA, USA (May 1996), pp. 35{44.

3. E. W. Dijkstra, "Self stabilization in spite of distributed control," Communications

of the ACM, vol. 17 (1974), pp. 643{644.
4. M. G. Gouda, N. J. Multari, "Stabilizing communication protocols," Technical Re-

port TR-90-20, Dept. of Computer Science, Univ. of Texas, Austin, (June 1990).
5. S. Katz, K. Perry, "Self-stabilizing extensions for message-passing systems," Dis-

tributed Computing, vol. 7, no. 1 (August 1990), pp. 17{26.
6. M. Schneider, "Self-stabilization," ACM Computing Surveys, vol. 25, no. 1 (March

1993), pp. 45{67.
7. J. M. Spinelli, \Self-stabilizing ARQ protocols on channels with bounded memory

or bounded delay,", Proceedings of the 12th Conference of the IEEE Computer and

Communications Societies, San Francisco, CA, USA (March 1993), pp. 1014{1022.
8. A. S. Tanenbaum: Computer Networks, third edition, Prentice-Hall, Englewood

Cli�s, N.J., (1996).

This article was processed using the LaTEX macro package with SIROCCO style

